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The Multicore era 
•  Moore’s Law continues 

•  Traditional sources of 
performance improvement 
ending 

–  Old Trend: double clock frequency 
every 18th months 

–  New Trend: Double # cores every 
18 months 

•  Power limits drive a number of 
Broader Technology Trends 

–  Number Cores  
–  Memory Capacity per core flat or  
–  Memory Bandwidth per FLOP  
–  Network Bandwidth per FLOP  

Figure courtesy of Kunle Olukotun, Lance 
Hammond, Herb Sutter, and Burton Smith 



3 

The Multicore era 
•  Moore’s Law continues 

•  Traditional sources of 
performance improvement 
ending 

–  Old Trend: double clock frequency 
every 18th months 

–  New Trend: Double # cores every 
18 months P. Kogge 

•  Implication for NERSC users 
–  3x increase in system performance with no per-core performance improvement (hopper) 
–  12x more cores in NERSC-6 (hopper) than NERSC-5 (franklin) (2 cores to 24 cores) 
–  Same or lower memory capacity per core on compute nodes 

•  Flat MPI-only model for parallelism will not scale 
–  Need to transition to new durable model that can sustain massive growth in parallelism 
–  Hopper changes are first step in a long-term technology trend 
–  NERSC needs to take proactive role in guiding transition of user community 
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Long-Term Concerns for NERSC Users 
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2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 

Top500 

COTS/MPP + MPI 

COTS/MPP + MPI (+ OpenMP) 

GPU CUDA/OpenCL 
Or Manycore BG/Q, R 

Exascale + ??? 

Franklin (N5) 
19 TF Sustained 
101 TF Peak 

Franklin (N5) +QC 
36 TF Sustained 
352 TF Peak 

Hopper (N6) 
>1 PF Peak 

NERSC-7 
10 PF Peak 
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NERSC COE 
•  Risks for NERSC and DOE User Community 

–  Users will not be able to make effective user of hopper 
–  Average job size will go down if users cannot scale 
–  Users will be exposed to multiple-disruptive rewrites of their 

code in effort to stay head of technology curve 

•  As mitigation for this risk, NERSC created the Cray 
Center of Excellence in cooperation with Cray Inc. 
–  Characterize performance of NERSC codes in context of 

emerging technology trends 
–  Evaluate viable/candidate programming models to make 

more effective use of future machines (hopper first) 
–  Develop training materials to guide the user transition to 

new programming model (map durable path to exascale) 
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NERSC COE: Project Plan 

•  Phase 1: Prepare users for hopper 
–  NERSC-6 application benchmarks provide representative 

set of NERSC workload and broad cross-section of 
algorithms 

–  User hybrid OpenMP/MPI model because it is most mature 
–  Analyze performance of hybrid applications  
–  Work with USG to create training materials for hopper users 

to disseminate results 

•  Phase 2: Prepare users for next decade 
–  Evaluate advanced programming models 
–  Identify durable approach for programming on path to 

exascale 
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NERSC-6 Applications Cover 
Algorithm and Science Space 

Science areas 
Dense 
linear 

algebra 

Sparse 
linear 

algebra 

Spectral 
Methods 

(FFT)s 

Particle 
Methods 

Structured 
Grids 

Unstructured 
or AMR Grids 

Accelerator 
Science X X 

IMPACT-T 
X 

IMPACT-T 
X 

IMPACT-T X 

Astrophysics X X 
MAESTRO X X X 

MAESTRO 
X 

MAESTRO 

Chemistry X 
GAMESS X X X 

Climate X 
CAM 

X 
CAM X 

Combustion 
X 

MAESTRO 
X 

AMR Elliptic 

Fusion X X 
X 

GTC 
X 

GTC 
X 

Lattice Gauge X 
MILC 

X 
MILC 

X 
MILC 

X 
MILC 

Material Science X 
PARATEC 

X 
PARATEC 

X 
X 

PARATEC 
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OpenMP Hybrid Programming 
Basics 
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Hybrid MPI-OpenMP Programming 

Benefits 
 + Less Memory usage 
 + Focus on # nodes (which is not increasing as fast) instead of # cores 
 + Larger messages, less time in MPI 
 + Attack different levels of parallelism than possible with MPI 

Potential Pitfalls 
-  NUMA / Locality effects 
-  Synchronization overhead 
-  Inability to saturate network adaptor 

Mitigations 
-  User training  
-  Code examples using real applications 
-  Hopper system configuration changes 
-  Feedback to Cray on compiler & system software development 
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What are the Basic Differences 
Between MPI and OpenMP? 

•  Program is a collection of processes. 
•  Usually fixed at startup time 

•  Single thread of control plus private 
address space -- NO shared data. 

•  Processes communicate by explicit send/
receive pairs 

•  Coordination is implicit in every 
communication event. 

•  MPI is most important example. 

K.Yelick, CS267 UCB 

•  Program is a collection of threads. 
•  Can be created dynamically. 

•  Threads have private variables and 
shared variables 

•  Threads communicate implicitly by   
writing and reading shared variables. 
•  Threads coordinate by synchronizing 

on shared variables 
•  OpenMP is an example 

Shared Address Space Model 

Message Passing Model 
Interconnect 
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Understanding Hybrid  
MPI/OPENMP Model 

T(NMPI,NOMP) =  t(NMPI)  +   t(NOMP) +  t(NMPI,NOMP) +  tserial 

count=G/NMPI 

   Do i=1,count 

count=G/NOMP        
!$omp do private (i) 
Do i=1,G 

count=G/(NOMP*NMPI) 
!$omp do private (i) 
Do i=1,G/NMPI 

count=G 
Do i=1,G 

Serial 

Serial 

Parallel 

Serial 

Parallel 

Serial 

MPI 
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Important to Set Expectations  

•  OpenMP + MPI unlikely to be faster than pure 
MPI - but it will almost certainly use less 
memory 

•  Very important to consider your overall 
performance 
–  individual kernels maybe slower with OpenMP but the code 

overall maybe faster 

•  Sometimes it maybe better to leave cores idle 
–  #1 Memory Capacity 
–  #2 Memory Bandwidth 
–  #3 Network Bandwidth 
–  #4 Flops……. 
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Hopper Node Topology 
Understanding NUMA Effects 

•  Heterogeneous Memory access between dies 
•  “First touch” assignment of pages to memory. 

P0 

P1 

P2 

P3 

Memory 
DRAM 

Memory 
DRAM 

Memory 
DRAM 

Memory 
DRAM 

2xDDR1333 channel 
21.328 GB/s 

3.2GHz x8 lane HT 
6.4 GB/s bidirectional 

3.2GHz x16 lane HT 
12.8 GB/s bidirectional 

•  Locality is key (just as per Exascale Report) 
•  Only indirect locality control with OpenMP 
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Hopper Node Topology 
Understanding NUMA Effects 

•  Heterogeneous Memory access between dies 
•  “First touch” assignment of pages to memory. 
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Hopper Node Topology 
Understanding NUMA Effects 

•  Heterogeneous Memory access between dies 
•  “First touch” assignment of pages to memory. 
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•  Locality is key (just as per Exascale Report) 
•  Only indirect locality control with OpenMP 
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Launch threads on “NUMA Nodes” (see COE talk) 
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Stream Benchmark 

Double a[N],b[N],c[N}; 
……. 
#pragma omp parallel for 
#endif 
    for (j=0; j<VectorSize; j++) { 
      a[j] = 1.0; b[j] = 2.0; c[j] = 0.0; 
    } 
#pragma omp parallel for 
 for (j=0; j<VectorSize; j++) { 
      a[j]=b[j]+d*c[j]; 
} 
… 
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Stream Benchmark 

Double a[N],b[N],c[N}; 
……. 
#pragma omp parallel for 
#endif 
    for (j=0; j<VectorSize; j++) { 
      a[j] = 1.0; b[j] = 2.0; c[j] = 0.0; 
    } 
#pragma omp parallel for 
 for (j=0; j<VectorSize; j++) { 
      a[j]=b[j]+d*c[j]; 
} 
… 
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Stream NUMA effects - Hopper 
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Studying the N6 Application 
Benchmarks 
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NERSC-6 Benchmark Codes 

•  Gyrokinetic Toroidal Code (GTC) 
•  Parallel Total Energy Code (PARATEC) 
•  Finite Volume Community Atmosphere 

Model (fvCAM) 
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NERSC-6 Applications Cover 
Algorithm and Science Space 

Science areas 
Dense 
linear 

algebra 

Sparse 
linear 

algebra 

Spectral 
Methods 

(FFT)s 

Particle 
Methods 

Structured 
Grids 

Unstructured 
or AMR Grids 

Accelerator 
Science X X 

IMPACT-T 
X 

IMPACT-T 
X 

IMPACT-T X 

Astrophysics X X 
MAESTRO X X X 

MAESTRO 
X 

MAESTRO 

Chemistry X 
GAMESS X X X 

Climate X 
CAM 

X 
CAM X 

Combustion 
X 

MAESTRO 
X 

AMR Elliptic 

Fusion X X 
X 

GTC 
X 

GTC 
X 

Lattice Gauge X 
MILC 

X 
MILC 

X 
MILC 

X 
MILC 

Material Science X 
PARATEC 

X 
PARATEC 

X 
X 

PARATEC 
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Breaking Down the Runtime - 
Tools 

•  IPM – Integrated Performance Monitoring 
http://ipm-hpc.sourceforge.net 
–  Time in MPI, Messages sizes, Communication 

Patterns 
–  Simple Interface to PAPI 
–  OpenMP profiler module added 

•  OMPP – OpenMP Profiler 
       http://www.cs.utk.edu/~karl/ompp.html 

–  Time Spent in OpenMP per region, Load 
imbalance, Overhead 

–  Also Interfaces to PAPI 
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Gyrokinetic Toroidal Code (GTC) 

•  3D Particle-in-cell (PIC)  
•  Used for simulations of non-linear 

gyrokinetic plasma microturbulence 
•  Paralleised with OpenMP and MPI.  
•  ~15K lines of Fortran 90 
•  OpenMP version 56 parallel regions/loops 

(almost all)  
•  10 loops required different implementation 

for OpenMP version (~250 lines) 
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•  Popular method for numerical simulation of many-
body systems. 

•  Often implemented from first principles without the 
need of an approximate equation of state 

•  Applications: plasma modeling, Astrophysics and 
modeling of debris fields from explosions 

•  1/3 of all CPU hours at NERSC 

Particle-In-Cell (PIC) simulations 

Grid/mesh overlaying particles to  
measure charge and current densities Generic PIC Schematic 

Move particles 
Fi  vi  xi (xi, vi) 

(E,B)j 

Weight particles  
to field 

(xi ,vi)  (ρ,J)j 

Field solve 
(ρ,J)j  (E,B)j 

Weight field  
to particles  
(E,B)jFj 

Δt 

“Push” 

“Solve” 

“Scatter” “Gather” 
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SC10 GTC Autotuning 

mgrid = total number of points 

•  GTC PIC Steps 
–  Scatter: deposit charges 

on the grid (interpolate to 
nearest neighbor) 

–  Solve Poisson 
equation: (local relaxation 
steps) 

–  Gather: forces on each 
particle from potential 

–  Push: move particles 
–  repeat 
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Important Routines in GTC 

poisson 
charge 
smooth 
pusher 
field 
shift  
load  

Setup 
#

Load 
#

Charge#
#

Poisson #
#

Field #
#

Push #
#

Shift#
#

Charge#
#

Poisson #
#

Field #

Poisson – charge distribution  Electric field 
Charge – deposits charge on Grid 
Smooth – smoothes charge on grid 
Pusher – Moves the Ions/Electrons 
Field – Calculates Forces due to Electric 
field 
Shifter – Exchanges between MPI tasks 
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GTC – Hopper – Large Test Case 
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Small Test Case – 96 cores – 
Breakdown 
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Small Test Case – 96 cores – 
Breakdown 
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Small Test Case – 96 cores – 
Breakdown 
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Small Case - Performance 
Breakdown 
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GTC: Communication Analysis 
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Strong Scaling 
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Strong Scaling cont. 
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Strong Scaling cont. 

!$omp parallel do private(i,j) 
        do i=1,mi 

  dnitmp(i,threadid) = 
… 
!$omp critical 
   do k=1,nthreads 

 do j=1,mgrid 
  dni(j) = dni(j)+dnitmp(j,k) 

. 
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Strong Scaling cont. 

!$omp parallel do private(i,j) 
        do i=1,mgrid 
           do j=1,nindex(i,k) 
              ptilde(i)=ptilde(i)+ring(j,i,k)*phitmp(indexp(j,i,k)) 
           .. 
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PARATEC - First Principles 
Electronic Structure Calculations 

•  First Principles: Full quantum mechanical treatment 
of electrons    

•  Gives accurate results for Structural and Electronic 
Properties of Materials, Molecules, Nanostructures 

•  Computationally very expensive (eg. grid of > 1 
million points for each electron) 

•  Density Functional Theory (DFT) Plane Wave Based 
(Fourier) methods probably largest user of 
Supercomputer cycles in the world.  

•  ~13% total NERSC workload including single 
“biggest” code VASP 

•  PARAllel Total Energy Code (PARATEC) proxy in the 
NERSC6 benchmark suite 
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ab initio Density Functional 
Theory (Kohn 98 Nobel Prize)  

Kohn Sham Equation (65): The many body ground 
state problem can be mapped onto a single particle 
problem with the same electron density and a 
different effective potential  (cubic scaling).	


Use Local Density Approximation 
(LDA) for  (good Si,C) 

Many Body Schrodinger Equation  (exponential scaling )	
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Load Balancing & Parallel Data Layout    

•  Wavefunctions stored as spheres of points (100-1000s spheres for 100s atoms) 	

•  Data intensive parts (BLAS) proportional to number of Fourier components 	

•  Pseudopotential calculation, Orthogonalization  scales as N3  (atom system) 	

•  FFT part scales as N2logN  	


FFT 

 Data distribution: load balancing constraints  (Fourier Space):	

•  each processor should have same number of Fourier coefficients (N3 calcs.)	

•  each processor should have complete columns of Fourier coefficients (3d FFT)	


Give out sets of columns of data to each processor  
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Basic algorithm & Profile of 
Paratec 

•  Orthogonalization – ZGEMM 
–   N3 

•   FFT 
– N ln N 

•  At small concurrencies ZGEMM 
dominates at large FFT 
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What OpenMP can do for 
Paratec? 

•  ZGEMM very amenable to threading 

•  FFT also 
– Can thread FFT library calls themselves 
– Can ‘package’ individual FFT’s so that 

messages are combined -> more efficient 
communication 
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PARATEC – Hopper 
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Paratec MPI+OpenMP Performance 
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Parallel “ZGEMM” 
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FFT Breakdown 
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Finite Volume Community 
Atmospheric Model- fvCAM 

•  Dynamics and physics use separate decompositions 
–  physics utilizes a 2D longitude/latitude decomposition 
–   dynamics utilizes multiple decompositions 

•  FV dynamics 2D block latitude/vertical and 2D 
block longitude/latitude 

•  Decompositions are joined with transposes 
•  Each subdomain is assigned to at most one MPI task 
•   Additional parallelism via OpenMP ~500 OpenMP 

directives over 72 .F90 files 
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fvCAM coordinate system 

•  576x361x28 grid (Longitude x Latitude 
x Vertical) (X Y Z) 

•  Original problem definition - 240 MPI 
tasks - 60(Y) x 4(Z,X) decomposition 

•  Dynamics uses Lat-Vert and Lat-Long 
•  Physics uses Lat-Long decomposition 

InitializationTranspose  Dynamics1  Transpose Dynamics2   Physics 
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fvCAM coordinate system 

•  576x361x28 grid (Longitude x Latitude 
x Vertical) (X Y Z) 

•  Original problem definition - 240 MPI 
tasks - 60(Y) x 4(Z,X) decomposition 

•  Dynamics uses Lat-Vert and Lat-Long 
•  Physics uses Lat-Long decomposition 

InitializationTranspose  Dynamics1  Transpose Dynamics2   Physics Dynamics 
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fvCAM - Hopper 

G 
O 
O 
D 

0 

10 

20 

30 

40 

50 

60 

70 

0 

100 

200 

300 

400 

500 

600 

700 

800 

900 

1 2 3 6 12 24 

240 120 80 40 20 10 

To
ta

l M
em

or
y 

(G
B

) 

Ti
m

e 
(s

) 

OpenMP threads / MPI tasks 

OpenMP time MPI time Serial time Memory (GB) 



54 

fvCAM MPI+OpenMP 
Performance 
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fvCAM Physics 
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CAM: Physics 

•  Columnar processes (typically 
parameterized) such as precipitation, 
cloud physics, radiation, turbulent 
mixing lead to large amounts of work 
per thread and high efficiency 

!$OMP PARALLEL DO PRIVATE (C) 
do c=begchunk, endchunk 
      call tphysbc (ztodt, pblht(1,c), tpert(1,c),     snowhland

(1,c),phys_state(c),phys_tend(c), pbuf,fsds(1,c)....       
 enddo 
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fvCAM - Dynamics 
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Summary 

•  OpenMP + MPI can be faster than pure MPI – 
and is often comparable in performance 

•  Beware NUMA !  
– Don’t use >6 OpenMP threads unless absolutely 

necessary or you can ‘first-touch’ perfectly 
•   Beware !$OMP critical ! 

–  Unless you absolutely have to 
•  Need Holistic view of your codes 

performance bottlenecks 
–  Adding more cores may not help –transpose 
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Advice to NERSC Users - Hopper 

1.  Should I use OpenMP? 
+  Need to save memory and have duplicated 

structures across MPI tasks 
+  Routine that parallelises with OPENMP only – 

Poisson routine in GTC 
-  Reduction operations – charge & push in GTC 
-  Threads can be hard – locks, race conditions 

2.  How hard is it to change my code? 
•  Easier than serial to MPI 
•  Easier than UPC/ CAF ? 

3.  How do I know if it’s working or not? 
–  IPM, OMPP, TAU, HPCToolkit, Craypat 
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Lessons for NERSC Users- 
Longer Term 

•  Are you going to tell me in 3 years that 
I should have used CAF/UPC/Chapel ?  

•  Uncertainty about Future Machine 
model 

–  GPU programming model – streaming  
–  Many lightweight cores 

•  OpenMP as it stands today is not 
ideally suited to either model 

–  Mend it? Broken ?? (GPU flavor of OMP) 
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Advanced OpenMP techniques 
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GTC - Shifte Routine 

•  Which e- to move?  
•  Pack e- to be moved  
•  Communicate # e- to 

move  
•  Repack non-moving e-  

•  Send/Recv e-  

•  And again…. 
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Shifte Routine 

•  Which e- to move? ✔ 
•  Pack e- to be moved ✗ 
•  Communicate # e- to 

move ✗ 
•  Repack non-moving e- 

✗ 

•  Send/Recv e- ✗ 

•  And again….. 
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OPENMP tasking 

Executing Thread Encountering Task 
 Region Adds Task to pool 
#pragma omp task 

Idle Threads Can 
Execute Tasks in pool 
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Tasking - Results 
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Shifter ~30% faster ! 
GTC overall ~5% faster 


